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The important role of the operator "r5 in the physics of elementary particles and 
their interactions is considered basic in this paper where it is shown that it 
corresponds to the duality rotation in space-time and how the dual geometry can 
be used to consider new symmetries for the wave equations of particles and their 
interaction fields. The new set of symmetries is shown to exactly correspond to 
what is needed to find the known schemes of leptons and quarks and to be the 
origin of many of the properties which are found experimentally for these 
elementary particles. 

1. INTRODUCTION 

What is known at present about elementary particles, leptons, quarks, 
and Higgs fields has enabled high-energy physicists to construct a periodic 
table where almost three families are now contained. Group theoretical 
studies are telling us which are the basic symmetries of the particles and 
their interactions. The present paper studies this problem from a different 
point of view: which can be the origin, within the frame of the physical 
space-time, of this scheme? 

A suitable theory should be able not only to accommodate the known 
quarks, leptons, and Higgs fields, and to provide a basis for the study of 
their interactions, most probably in the form of gauge fields, but also of 
explaining other constraints like the ones used in the Weinberg (1967) and 
Salam (1968) theory of weak interactions allowing left-handed fields only, 
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although the electron may also have a non-weakly-interacting, right-handed 
field. The basic operator to project out left- and right-handed fields (1 T iy5 ) 
is also used in quantum mechanics of sp in - l /2  particles to transform the 
operator for a vector "t~ into the operator for an axial vector ~'5~'~. Vectors 
and axial vectors are duals in the geometry generated by the vectors. As the 
~,~, vectors generate space-time geometry, the duality operation actually 
corresponds to duality in space-time. This tells us that one of the basic 
symmetries of matter fields must be dual geometry symmetry. 

In this paper, after a brief review of space-time geometry, we discuss 
Lorentz and duality transformations, their implications for quantum me- 
chanics, and the wave equations for dual geometry constrained particles and 
their interaction fields. At the end we discuss the connection with what is 
experimentally known about leptons and quarks. 

2. SPACE-TIME GEOMETRY 

The physical space-time corresponds to the vector space where the 
physical events occur. Physical events are primitive notions, together with 
the idea that they form series, or physical timelike trajectories, and that 
there exists some order in the series such that for each event series, or world 
trajectory, there is a "pas t"  and a "future"  to a present event. Then the 
physical space-time defines a geometry as the set of all possible physical 
events such that world timelike trajectories with geometrical order are 
contained. The basic trajectories are taken to be light signals used to define 
the causal relationships between the events. The quantum nature of the 
physical events is also accommodated in the scheme, as we will do in this 
paper, considering matter particles as sets of nondecaying events associated 
to a hypervolume h. This will provide a basis for a consistent theory of 
matter where the known elementary particles correspond to the different 
ways a field can be constructed, which is compatible with the postulates 
above. A series of trajectories are available, for a given matter particle, 
where the events are then given a nondecaying phase. 

The physical space-time relates pairs of these events in such a causal 
way that for an event a o for particle a of trajectory A, the trajectory B of 
the series of events of particle b is divided in three segments: the absolute 
past B 1, the non-causally-connected B z, and the absolute future B 3 such 
that, if ---, means "follows in the time-ordered sense," {b 1 ~ BI} ---, (b  2 
B z } ~ ( b 3 ~ B 3 }, an event b t can influence but not being influenced by 
a o, b 2 cannot influence or be influenced by a 0, and b 3 can be causally 
influenced by a 0, but cannot influence a o. Moreover B = B1 t3 B 2 U B 3. 
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We also require that if b~ and b~' are in the future of a, that is, if there 
is a free particle or light trajectory from a to b~ and b~' and there is a point 
d~ in the future of some b~b'3 ~b~' such that d~ is in the (a to b~) 
trajectory, then the (b to d)  trajectory crosses the (a to b") trajectory at 3 

I I  p I t  

s o m e  d 3 such that b ~ d 3 ---, d 3 . 

The particles and light trajectories are considered to be continuous and 
equivalent for change of orientation in the sense that if the double trajectory 
(a to  b 3 to  a3)  is physically equivalent to the (a to c 3 to a3) then one can be 
obtained from the other by a Lorentz group rotation. The physical space-time 
is finally considered to be four dimensional. 

It is important to recognize that there are no one-dimensional, two- 
dimensional, or three-dimensional physical spaces but only physical series 
of events where the equations are independent of three-, two-, or one-coor- 
dinate parameters. 

Lower- or higher-dimensional physics seem to be nothing more than 
useful exercises. The definition of light trajectories as the fastest ones and 
the limit for physical phenomena trajectories puts them in a special position 
as geodesics in space-time for which there is no perpendicular space. The 
speed of light is a constant, a global constant in Minkowski space-time and 
a local constant in general relativity where the Lorentz invariance is also 
generalized to a local symmetry; the geometry generated with these proper- 
ties constitutes the physical space-time. 

Light trajectories are the fastest trajectories in the sense that they mark 
the onset of absolute future for any physical event. 

We now consider the tangent space D(x) at point x of space-time with 
orthonormal vectors 

3'~ Dx~; ~'ff=l, ~'?= " 2 =  = ~'~  = ~'3 - 1 ( 1 )  

here [] corresponds to the gradient operator with components 

[] = ~,~O ~ = y~13~ (2) 

where we have introduced a metric given by the symmetric product 
(. product) 

(3) 

we can also define contravariant multivectors from their antisymmetric 
product (this product also called A product) (Proca, 1930a, 1930b; Sauter, 
1930a, 1930b; Juvet, 1930, 1932; Eddington, 1936; Mercier, 1934, 1935; 
Sommerfeld, 1939; Rav~evskff, 1957; Riesz, 1946, 1953, 1958; Teitler, 
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1965a, 1965b, 1965c, 1966a, 1966b; Hestenes, 1966, 1975; Salingaros and 
Dresden, 1979; Greider, 1980; Casanova, 1970, 1976; Boudet, 1971, 1974; 
Quilichini, 1971), as 

~,~ ..... x -= ~r ... A~, x (4) 

defined by recursion that is, if b is an n-vector and a is a 1-vector, 

a A b -  �89 ab + ( - 1 ) " b a )  = aAblAb2A. . .  Ab,, (5) 

or, in general 

AAB = � 8 9  Ba)  (6) 

for any pair of multivectors A and B, where A and B are the reverse 
multivectors, it is a multivector where the sign of all vectors has been 
reversed. The full power of multivector algebra is obtained if, following 
Mercier (1935) and Hestenes (1966), we define their total or geometrical 
product 

ab= a.b + aAb (7) 

where the generalized inner product is given by 

A . B = � 8 9  (8) 

The gradient operator has the two following main properties (Hestenes, 
1966): (a) D i maps scalars ,~ into scalars, 

U,q~ = Oi~ (9) 

(b) t3, maps vectors into vectors, 

D,vj = - (1o) 

This defining the connection coefficients F~ for the frame ( ~,~ }. It obeys the 
Leibnitz rule and is distributive with respect to addition. 

An observer S 1 at x has at his disposal the 16 different basic multivec- 
tors of the space-time algebra, also called Dirac algebra. This algebra and its 
symmetries is shown in Figure 1. It should be remembered that all the 
elements of the space-time geometric algebra also correspond to operators, 
Figure 1 shows this correspondence where 1 is the identity operation, P 
corresponds to the parity operation, ~ to the time reversal operator, L,e to 
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Fig. 1. Space-time multivectors, their symmetries and their properties as operators. 

the Lorentz group of rotations R and Lorentz boosts L, D corresponds to 
the duality operator. The super index D to the dual of the operator. The 
duals of the scalars are the hypervolumes, the duals of the vectors are 
the volumes or axial vectors, and the duals of the spacelike surfaces are the 
timelike surfaces; this is also shown in Figure 1. Geometric duality is a 
reciprocal property and in practice it has the geometrical meaning that the 
product of a quantity and its dual corresponds to hypervolume or space-time 
volume. 

3. LORENTZ TRANSFORMATION AND DUALITY 
ROTATIONS 

A Lorentz transformation of one member of the Dirac algebra ~ ( x )  
takes the form 

~@(x) --* ~@'(x) = R ( x ) ~ ( x ) R - ~ ( x )  (11) 

with R being the sum of a scalar, a bivector, and a pseudoscalar such that 

RR - l =  R-1R =1 and R -1 = +.R (12) 

(k  is a multivector where the order of all products has been reversed) which 
is written in terms of generators 

R = +_ e-1/2B; B =  b~y/y~,  1~ 4~ u (13) 
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with B corresponding to a bivector as shown in Figure 1. Then the vectors 
associated with the second observer $2 

a~, = R ' ~ , R  - t (14) 

will again be orthogonal but not necessarily constant. 
A new type of operation, the duality rotation D r is generated by the 

operator yst"~,~y;, where the dyad Y~3'u" has been introduced to allow 
independent rotations of the four basis vectors; this operation is continu- 
ously connected to unity through the duality rotation operation 

D~ = exp(iystu3,,7; ), (iy5)2 =1 (15) 

4. QUANTUM MECHANICS 

To study a physical system consider the energy momentum vector 
relation p = p' for a "particle" moving with respect to observer S t, 

pO~, ~ + pXy t + p2y 2 + p3y 3 = p,0y~ + p,l~,~ + p,2y~ + p,3yd (16) 

the primed components are those computed by $1 when the particle's 
motion is referred to an S~ inertial system. A similar result could be 
obtained if a three-vector relation p = 13' is used instead, with the same 
components (Keller, 1982b), with the added feature that the three vectors 
,/~,p are now "oriented" with respect to observer S 1 and two types of 
"particles" will now be possible those with positive orientation which could 
be interpreted as positive mass particles or standard particles, and those of 
negative orientation, which could be interpreted as negative mass particles 
or antiparticles. The action p. x being an hypervolume. 

A Lorentz transformation R relates S t and S~ in such a way that 

% = Ry~k and 7~ = h % R  (17) 

and, substituting the first of these relations into (16), we obtain 

P'~7,, = p"~R'y , ,h  (18) 

With this transformation the explicit dependence on the vectors of S~ has 
disappeared, in fact equations (18) and (19) below are written in terms of 
the vectors of S 1. 
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Here we will do two substitutions which will transform this equation 
(18) into a multivector form of the Dirac equation (Keller, 1982a), first 
multiplying by R (constructed with vectors of S~) on the fight, to obtain 

pO- og = p' Rro (19) 

We may then make a further Lorentz transformation with the even multi- 
vector Q which is a generalized gauge transformation 

Q = e x p ( - I { p . x + q ~ ( x ) + i y s [ p ' . x ' + q ; ( x ' ) ] } / h ) ,  1 2 = - 1  (20) 

the first term in the exponent with a particular choice (standard represen- 
tation) I =  ~'~2 = "Y5"Yo'Y3 which corresponds to a rotation in an arbitrary 
plane. The phase factors qffx) generate a (set of) connection(s). These 
factors are, in general, the sum of a scalar, a bivector, and a pseudoscalar 
and, as we will see in the next two parts, they will correspond to gauge 
interactions fields generating the electromagnetic, weak, gluon, and gravita- 
tional potentials. Otherwise ~(x) and q~'(x) should be taken as constants. 
The ~(x) have to be even too. 

This factor Q, a further Lorentz transformation, can be used, with 
constant qJ and q;, to obtain the values of the components p'~ using 
g,,t3 Ot3QI = P~'Q. Define now the composite Lorentz transformation 

= R Q ,  { = Ok (21) 

to obtain (Keller, 1982a, b) the eigenvalue equation 

Y ,, g ,~13 01~ ~' I = i g a t3 c9 ' ~  Y 5 I Y ls (22) 

which we called the full Dirac equation, in multivector form. 
Equation (22) shows that we could mix in the same equation "G and 

"/5~'~ that is, a vector and its geometrical dual the axial vector Y53', = Yr. A 
simpler, equally useful although less symmetrical equation, is obtained if we 
use the more common expression pay,, = mo.t6 as a starting point in (16) to 
obtain, instead of (22), the equation 

y~,g,,~,O,~bI = m0q, Y0 (23) 

which is the Dirac equation in multivector form. It was derived by Keller 
(1982a, b) without the use of the standard postulates of quantum mechanics. 
The analysis reproduced here constitutes a new way of obtaining basic 
operators of quantum theory. Otherwise the factor Q, equation (20), is the 
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expression of the de Broglie's phase wave in the multivector form of 
quantum mechanics. The first time that an equation like (23) was used, 
corresponds to the work of Proca (1930a, b) but it was really obtained from 
the interpretation of the Dirac algebra as a geometric algebra by Hestenes 
(1966, 1975, and references therein). The work of Teitler (1965a, b,c; 
1966a, b) and of Casanova (1970, 1976) should also be mentioned. Our 
derivation of (22) and (23) further justifies these equations. It shows a direct 
path from the de Broglie's hypothesis to the basic equations of quantum 
mechanics. The matrix representation of the To vectors generates the matrix 
form of the Dirac equation. But in order to obtain the Dirac equation in the 
standard form, without a matrix representation, all that is needed is to 
define the wave functions ~k to be eigenfunctions of To/, with eigenvalue i 
[equation (23) must be multiplied by I on the right], 

+ToI=iff  (24) 

reducing (23) to the standard Dirac equation in the Proca form. Another 
approach is to define a Dirac spinor u to be an eigenspinor of the same 
operator, Tolu = iu, the standard Dirac wave function being 

'I,= (25) 

with ~ = (1,0, 0, 0) when the vectors "t~ are represented in the standard form. 
The presence of the gauge phase factors ~(x) will make the transforma- 

tions (17) nonconstant with the result that the local timelike vector of the 
particle's reference system 

0r(x) -- (T~(x))~ = (~(x)T0~k(x))~ = ~ (x)T0~ (x)T, (26) 

changes from one point of space-time to another. This allows a new type of 
question: what is the relative probability of presence for particle k in 
space-time volumes o 1 and v2? This leads to a probabilistic analysis of the 
results obtained with the wave equations. 

5. DUAL GEOMETRY THEORY OF ELEMENTARY 
PARTICLES 

As we mentioned in the introduction, the operator to project left- and 
right-handed fields is the same operator which transforms a vector into an 
axial vector. The Weinberg-Salam theory showed the basic role of this 
operation in elementary particle physics; it is to be expected that the 
unification of fundamental interactions will not change this considera- 
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tion, so then the unified scheme (Georgi and Glashow, 1974, Fritzsch and 
Minkowski, 1974, Georgi, 1975, Chanowitz, Ellis and Gaillard, 1977)join- 
ing strong and electro-weak interactions should clarify, this particular prop- 
erty of the )'5 operator or duality in the geometrical sense. 

The duality operation will be introduced as a geometric duality trans- 
formation 

~'. --" "if = cos O~'t~, + i sin O~'tf 
(27) 

y~--' iy ~  - sin 0.7,~ + i cos 0~y ~ 

or a multivector notation 0~ = t~,O 

3,. --  3, f = exp( i~ft~O'y. �9 7~-exp(-  iTft~,OT~/2) = exp(iTft~07~ �9 )'1~ 

(28) 

as a continuous operation connected to the identity. 
This duality transformation could be used in the exponent of the factor 

Q in equation (20) and correspondingly in equations (22) or (23). In the 
particular case of massless fields and 0 = ~r/2 as a reference duality rota- 
tion, we would obtain an equation 

i~gt~O~'~ssin(t~Ir/2)+ vxgx~O~'~cos(t.lr/2 ) =0 (29) 

which is a combination of the standard Dirac equation for a massless field 

iy,~g,~ 0/~ = 0 (30) 

and its dual 

3'~g~ aa't'~'5 = 0 (31) 

But it is not a simple combination because the duality rotation angle is 
allowed to have different values for different components a as shown by the 
subindex a in the coefficients t~. 

We could also write equation (29), using the definition of the K 
geometric duality transformation (27), in the simpler form 

iyfg~l~Olj~ = O (32) 

This is possible because the wave function ~k is an even multivector, 
equation (13), then it commutes with "Ys- 
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If the duality rotation coefficients t,, = t for all four components, we 
could write on the right hand side of (29), (30) and (32) the mass term. That 
is, only if all four duality rotations are equal, massive fields are allowed. 

Equations (29) (or (32)) are no longer Lorentz invariant except if we 
select the left-handed field (or the right-handed if O = - 7r/2), 

~t'D,5 = - ixt' L , [usingt.=(t,t+1)=integerin(29)] (33) 

reducing equation (32) to (30). We may then see that the fact that in nature 
left-handed fields only are allowed, in certain cases (not for the electron 
where t,, -- t + 1), makes the geometric duality rotation a basic operation of 
elementary particle physics. It also says that if experimentally left- and 
right-handed particles of a given type are found, they must correspond to 
fields where all four duality rotations are equal. If not all four duality 
rotations are equal, the fields must be massless, to begin with, and will not 
conserve Lorentz invariance unless a particular choice, left-handed field, 
say, is made. 

But even if only left-handed fields are allowed, there is a further 
constrain on the t ,  in equation (29). They should all be either equal or differ 
by only one unit among themselves. Otherwise, the substitution of (33) into 
(29) will not give (30) back. Then the physically allowed fields will be those 
for which the t ,  = t, t + 1; reducing the number of physically allowed fields 
to a well-defined collection of sets. Each set corresponding to a given value 
of t. The values of t may only be t = 0,1, 2, 3. Other sets will correspond to 
anyone of these basic ones as they will correspond up to a full 2rr duality 
rotation. A special case is presented by the field where all four t,, = 0, which 
we will treat separately in the following analysis. 

The set of all physically allowed fields was given the generic name of 
symmetry constrained Dirac fields, or diracons for short (Keller, 1981, 
1982a, b). 

With the definitions and restrictions already discussed in this section 
we can construct four sets or families of which the first three are shown in 
Table I, t = 0,1, 2, together with the possible identification of these fields. 
Each set should really be called a family generated by a value of t. It is seen 
that the collection of diracon fields can generate a unified description of 
quarks and leptons. In the next section the identifications will be further 
discussed when we analyze the gauge fields for the interactions, finding the 
correspondence with electroweak and color forces. 

It is clear that dual geometry symmetry explains all the elementary 
particle fields known, the existence of color degeneracy for quarks, the 
existence of families and, as we will discuss in the next section, the origin of 
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TABLE I. Allowed Combinat ions of Quan tum Numbers  a,~ = t,~ - t 
Corresponding to Duality Rotation of the Wave Function ff of a 

Symmetry-Constrained Dirac Particle (Diracon) 

Possible identification of the corresponding matter  field 
a I a 2 a 3 a o t = 0 family t = 1 family t = 2 family 

0 0 0 + 1 Electron neutrino Muon neutrino Tau neutrino 

+1  0 0 +1  Parton (t = 0) Parton (t =1)  Parton (t = 2) 
0 + 1 0 + 1 Three "colors" Three "colors" Three "colors" 

0 0 +1  +1  ( d  quark) (g quark) (b quark) 

+1  +1  0 +1  Parton (t = 0) Parton (t = 1) Patton (t = 2) 
0 + 1 + 1 + 1 Three "colors" Three "colors" Three "colors" 

+1  0 +1  _+1 (u  quark) (c quark) (t quark) 
+ 1 + 1 + 1 _+ 1 Electron Muon Tau 

the strength and confinement in color interactions. But dual geometry 
symmetry is not new in elementary particle physics or in the study of the 
interactions as discussed in the next paragraphs. 

We need to make a short disgression about the electromagnetic field. It 
has been suggested that a natural extension of the Maxwell equations would 
be that where magnetic monopoles are accepted to exist. One of the main 
arguments in favor of this theory is that in this case the Maxwell equations 
would be symmetric under the exchange of electrical and magnetical quanti- 
ties, and this is precisely the effect of a 0 o = 90 ~ duality rotation [see, for 
example, Frankel (1979), Chaps. 9 and 10]. On the other hand, if e is the 
elemental electric charge and g the elemental magnetic pole, a duality 
rotated theory can be constructed out of the fully symmetric theory by the 
use of a reference duality rotation angle 0o ~ 

cosSn= e/( e2 + g2)'/2 

in which an equivalent description will have as electric charge 

and magnetic pole 

(34) 

g ' =  0 (36) 

This means that experiment can decide on the representation we are using, 
under duality rotation, for a theory. 

In the case of the diracon fields, we can, for example, use t o = 1 or 
t o = 0 for the electron field, but both cases are different; if one is taken to 

e ' =  (e 2 + g2) 1/2 (35) 
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correspond to the electron, t , , = l ,  say, the other will correspond to a 
0 D = 90 ~ duality rotated field or to monopoles of the magnetic field. These 
choices being, to some extent, arbitrary. The simplest first approximation is 
obtained when we remember that if the fields are to be identified with the 
known families, three families of leptons will be found (e,/z, r) ,  leading us 
to the choice t ,  = 1 for the electron field, t,~ = 2 for the muon field and 
t,~ = 3 for the tau field. The t,, = 4 and the t,~ = 0 fields are equivalent and 
correspond, as we have already mentioned, to a magnetic monopole field. 

In the following we will write t,, = t + a,,; then t corresponds to the 
family number  as t = n - 1. 

What we have done in practice, in equation (29), is to introduce a new 
type of symmetry, besides the global and local invariance which are at the 
origin of gauge fields which will be discussed in the next section. The new 
symmetry is the invariance of (29) and the gauge fields under four separate 
duality rotations 0f ,  ~t = 0,1,2, 3, which break Lorentz invariance unless all 
four Of = 0 B (isodual case). B corresponds to set { a ,  }. They are, for a 
given observer S splitted into space like/~ = 1, 2, 3 = i and time like/t  = 0. 

For observer S the a~ corresponding to an observable field or combi- 
nation of fields are to be the same in order to maintain rotation invariance 
as required by experiment. Fields will be either isodual or anisodual. The 
isodual fields are the usual Dirac and Maxwell fields for a given nth 
representation. The anisodual matter  fields are required to be a set of (anti-) 
self-dual fermion fields for (anti-) particles of the nth representation, it is 
(fight) left handed. There will be, as discussed below, anisodual interaction 
fields corresponding to (anti-) self-dual vector-axial  vector boson fields. 

( b = � 8 9  = r  T 

( O A :  ~ , =  . . . . . . .  - ~ -  . . . . . . .  A 

~ T 

e + ~ T 
. . . . . . .  ~ . . . . . . .  A 

. . . . . . .  - ~ -  . . . . . . .  B 

. . . . . . .  - ~  . . . . . . .  C 

U c ~ T 

dA --'~ T 

Fig. 2. Diagramatic representation of the correspondence between diracons and some elemen- 
tary particles. An alternative representation is suggested of considering all fields as composite 
of b and a A fields (Harari, 1979; Shupe, 1979; Keller, to be published). 
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In space-time it is possible to define a Galilean space and time which 
makes rotational invariance, in the space part, a fundamental symmetry 
(Reus and Keller, 1983). 

Figure 2 schematically shows the first family of quarks and leptons as 
sets of lines conserving dual symmetry quantum numbers. 

Besides the three families shown in Table I and the magnetic monopole 
field, we are left with one more field of the neutrino type (to be paired with 
the monopole field) and two more quarklike fields which have not been 
discussed in the literature in relation to experimental data. This fourth 
family is thus, this far, completely hypothetical, even the existence of the 
magnetic monopole is uncertain. 

But a further discussion should wait for next section where the interac- 
tions are analyzed. 

6. DUAL GEOMETRY THEORY OF THE INTERACTION 
FIELDS 

The interaction fields will be assumed to obey the general relation 

O,~O,,A n = j 8  (37) 

where the A are to be identified with gauge interaction fields with a set B of 
duality rotation constraints, arising from a source J with the same type of 
constraints. If the source is taken to be a current 

(38) 

the field A B will then be a vector-axial vector field. If the source is taken to 
be a tensor (that is a collection of four vectors), the field A B will be a tensor 
field, tensor fields mix their components under duality rotations. As the 
sources have been required to be eigenspinors of the duality operator ~'5. 

3,5~k B'= + i+ 8" (39) 

the interaction fields should also be eigenvectors of the duality operator ~'5 

7 5 A  B = + iA B (40) 

which will reduce (37) to a Maxwell-like equation. Here again, B corre- 
sponds to the nth set {a~}. 

In order to write the interaction fields corresponding with the schemes 
accepted today, we should consider the following: 
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(a) Equation (37) will reduce to the Maxwell equation if a definite 
fundamental representation of the duality rotation angles is introduced as 
defined by equation (34), in which the field we have chosen to identify with 
the electron fields in Table I is taken to have charge and no magnetic pole 
as in equations (35) and (36). This reference duality rotation angle corre- 
sponds to 0 f  = 7r/2, that is, full duality. Then charged particles will be 
those where the three spatial duality constraints are equal to a 0 = 1; besides 
the electron, only composite fields could present this characteristic, the 
scheme being repeated for the muon family and for the tau family. 

(b) The two sets of fields called parton in each column of Table I will 
correspond to the quark fields, color being defined by the particular duality 
constrained a i which is different from 0, then one type of quark will carry 
one color only and the second type of quark will carry two colors. A 
composite field with all three colors will be charged and a composite field 
without all three colors will be neutral. 

(c) As will be shown in the examples of the next section, composite 
particles, baryon number will correspond to the number of fields where the 
spatial duality constraints are not symmetric, that is, where exchange of xi 
and x j, i ~ j,  will change the representation. 

(d) Weak charge, or the possibility to have a change similar to that 
taking a neutrino into an electron, corresponds to the possibility of simulta- 
neously changing the three spatial duality constraints by one unit. The 
parton fields will allow this change among themselves in a similar way to 
lepton fields. 

(e) We already mentioned the family number, n = t +1, which of 
course corresponds to flavor. A flavor-changing interaction is possible 
which will change all duality constraints simultaneously by an integer. 
Combinations of interactions will reduce to the ones already listed here. 

Then the interaction fields defined by equation (37) will be of three 
types: those which do not change the duality constraints (to be identified 
with the electromagnetism), second, those that do change the duality con- 
straints (gluon, weak, and flavor-changing types of interactions), and those 
which, arising form the tensor part (or bivector) of the phase factors q~(x) in 
(20), will generate the necessity of a local compensating vierbein, resulting 
in gravitational interactions. In 

(x) = (x) + Y5 (x) + . (x) (41) 

the set of four ~2~' correspond to the gravitational field. 
In Table II we present the possible fields compatible with equation (37) 

for a vector (axial vector) current source. The equations for the gravitational 
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TABLE II. Possible Interaction Fields Classified According 
to the Duality Constraints a~, They Carry 
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a o a I a 2 a 3 Possible identification 

0 0 0 0 Electromagnetic 

1 0 0 0 Flavor-changing field 

0 1 0 0 Color-changing 
0 0 1 0 fields generating the 
0 0 0 1 gluon scheme 

0 1 1 0 Color-changing 
0 1 0 1 fields generating the 
0 0 1 1 gluon scheme 

0 1 1 1 Weak interaction 

1 1 1 1 Flavor-changing field (Higgs?) 

interaction will be discussed below, and we will not discuss in this paper the 
possibility of duality rotation constraints in the gravitational field fL 

From top to bottom in Table II, we have the following: 
(a) The electromagnetic field which, with the convention we have 

adopted above of the electron field carrying charge, exchanges energy and 
momentum between the interacting particles. 

(b) The weak field carrying a~ = 1 and a 0 = 0, a quanta of which will be 
able to simultaneously change all three spatial duality constraints of an 
emitting or receiving particle. Changing for example an electron into a 
neutrino, a quark of one type into the quark of the second type or a 
composite particle like a proton, into a neutron as will be discussed in the 
next section. This field, being symmetrical on the three spatial duality 
constraints a~, will carry charge itself and may be properly called W +. For 
the current of the antiparticles or for the inverse interaction, a W- field can 
be defined with a~ = - 1 .  And from the algebra of these fields, 

z ~ - [ w +, w -  ] (42)  

a neutral field is defined. The three together present SU(2) symmetry. 
(c) We find two sets of three equivalent fields which change the color of 

the particles as they carry one or two a~ e 0. An absorption of one quanta 
will change either one color or two colors simultaneously. But it must be 
remembered here that the fields called partons, which in fact correspond to 
the quarks, cannot exist alone in free space as they break rotational 
invariance. Then, it is not physical to consider a scheme in which one quark, 
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say, with two colors, emits one quanta of the field being discussed, without 
a second quark being immediately available to receive the "color." This 
forces two considerations: what is immediately available? and, even if a 
second quark is available only some combinations of these interaction fields 
are possible. 

The quarks we have identified with the parton fields of Table I should, 
in principle be massless, according to equation (29); if it were so, the 
coherence length of a two quark system would be, ~ = h/mc,  infinite, 
which is not possible, then composite systems, of several quarks each, must 
be massive, the mass being the sum of the energies of the components in the 
center-of-mass system, and related to some volume through this coherence 
length. It is within this volume that the interaction field quanta can be 
exchanged and the scheme of possible exchanges correspond to the eight 
generators of a SU(3) color symmetry, factoring out the identity, as a linear 
combination of 

Gij = a~aj. (43) 

(color j taken away and color i being given), the quanta of Gij cannot be 
emitted outside of the composite particle as they are not rotationally 
invariant themselves. The strength of this interaction should, in principle, 
from equations (37) and (41), be the same as that of the electromagnetic 
field, but this will not be what will be observed in practice because only if 
the distance between the quarks is small, compared to the coherence length, 
the interaction is possible. If the two quarks were to come farther apart than 
this coherence length, rotational invariance would be broken and in order to 
restore it, a new pair of quarks will be needed, one of each near the original 
ones, to locally restore rotational invariance; the net effect being that a 
"strong" interaction will be observed, with strength equal to the energy 
required to create a two-quark pair and the necessary extra gluons. A 
symmetry constraint is transformed, from the experimental point of view, 
into a dynamical constraint. As this coherence length depends on the mass 
(energy), the strength of the color force will seem to depend on energy. 
Moreover, the quanta of the gluon fields, carrying color themselves, should 
also acquire energy in order for a coherence length ~g/n  = h /mc  to be 
defined as in the case of quarks. Then, the mass of a composite particle will 
increase with the number of quark components and with the number of 
gluons required to conserve color invariance. Here and in the discussion of 
quarks, above, mass refers to the center of mass of the composite particle, 
the components may remain massless in the sense of rest mass. As a first 
approximation the mass of the composite particle could be written 

m = nqmq + ngmg + Am (44) 
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with nq the number of quarks, ng the number of fluons, mq a center-of-mass 
system mass of the quarks, mga  center-of-mass system mass of the gluons, 
and Am the corrections arising from pairing of spins or other contributions 
to the binding. Our analysis is in fact in agreement with the idea of the bag 
model. Here we have freely used the quark terminology as accepted today; 
we refer the reader to the excellent bibliographic review now available in the 
resource letter by Greenberg (1982). 

In the next section composite particles are discussed because it is clear 
that in the present theory it is unphysical to speak of the properties of 
quarks and gluons as free particles, but only of the properties they carry in 
an independent particle model for the elementary particles. 

(d) The gravitational interaction, arising from the bivector part of the 
phase factor (41), because in order to compensate such gauge transforma- 
tion a vierbein is needed 

fj = ( fo e- oa ) j (45) 

where the f~  are locally Lorentzian tetrads. This vierbein is to be defined in 
v such a way that the covariant derivative of the energy momentum tensor t~, 

defines an equation of motion: (here u~, = dx , /ds ,  the four-velocity, s 2= 
g"ax~xr 

g~,~ = "q.Bf~f~ = [tie -2Da ] ~,. (47) 

where the ~.t~ is a locally Lorentzian metric. This has defined a gravita- 
tional field, gauge invariant, as 

~,; = o.a~ + o % - ~ ; o o a o  (48) 

which will obey, for self-consistency, the field equation 

U2s = 4G~r(T- �89 (49) 

with T being the tensor of the total sources, o is the density. 
Equations (45)-(49) define a selfconsistent field theory of gravitation. 

The metric being an exponential-type metric, as has been discussed by 
Yilmaz (1982) and, as discussed by Goldman (1983) in the present con- 
ference, it could be related to other metrics by a different choice of gauge. 

requiring a condition 0 r ( -  g)l/2g~, = 0. The metric will be given by 

o du~ 
rqt~ = 4oro I O,g,au"u p = 41ro ds (46) 
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7. COMPOSITE PARTICLES 

From the preceding discussions it is now clear that there will be two 
types of composite particles: the ordinary ones, like atoms and nuclei which 
can be split into smaller components, and the heretofore called elementary 
particles of the hadronic type, which can be excited or transformed or may 
even react or decay but the components of which cannot exist as indepen- 
dent entities. The prototypes would be the proton for the baryons and the 
,n - +  for the mesons. 

In Figure 3 we show schematically the structure of the proton and of 
the neutron as composite particles, in the sense of their quark content. Also 
shown is one of the possible mechanisms for proton decay. Here we have 
used again a set of lines conserving dual symmetry quantum numbers, but 
we have not symmetrized schemes in relation to colors, named A, B, and C. 

In Figure 3 we also show the composite structure of the ~r § meson but 
this time we have also included a fundamental set of gluon fields, as wavy 
lines which should coexist with the quark lines, in order to illustrate that the 
gluon content of the particles, as symmetry constraints carrying fields, 
should also be considered when particle excitations and decays are studied. 
The weak decay of the rr +, as a meson composed of quarks of the first 
family could be expected, from a first approximation consideration, to 
proceed directly into a positron and a neutrino; but if the symmetry-con- 

p r o t o n  n e u t  r on  

" "T 1 2222222=2-2-_-_2- ~ . . . . . . . . . . . . . . .  A Uc 

�9 T /  4 T dA 
....... -'- ....... B U A -- ............... A 

J . . T/" dB . . . . . . . . . . . . . . .  -.,: TIC .,t . . . . . . . . . . . . . .  B I . . . . . . .  . . . . . . .  B , d 8 ,  

pro ton  d e c o y  

{ ~ T ~ T . . ~ J . . . - - - -  I 

- - ~ - - C ~ C  - - ~ - - /  

--~--A/A--~--~ { - - ~ - - C ~ C - - ~ - - / ~  
UB ~ T ~ T  �9 J~C 

positive pion 

T 1 " 
T �9 

~ C . . . . . . . . . . . . .  --~ 

B ~  

Fig.  3. Composite elementary particle fields in the diagramatic representation of Figure 2. The 
proton and the neutron as  a three-quark system; a possible path for proton decay is a l so  

shown. For the ~-+ the gluon fields are shown as wavy lines, the decay of this particle should 
consider the color carried by the interaction fields. 
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straint-carrying gluons are also considered, a weak decay into a/~+ and a ~, 
is apparently more favorable. This is the case as shown by experiment. The 
decay of the /z + is, otherwise, expected to proceed via p~, + ~e + e+ as 
observed in experiment, too. In this last case there are no gluons to consider. 

We have then seen two of the main roles that the gluon lines will play 
in the study of the physics of the composite elementary particles: as 
mentioned in Section 5, they will have a contribution to the mass in the 
center-of-mass system of the composite particle and, second, as they carry 
dual symmetry constraints they will favor some reaction and decay mecha- 
nisms. 

Once we have accepted that quarks will only exist inside of composite 
particles, and that the composite particles will have to be symmetrized with 
respect to color, we can now think of quarks as fractional electric charge 
fields because they will have the correct combination of colors 1/3  or 2/3 
of the time. Quarks will then be observed as fractional charge components 
in the electromagnetic interactions of composite elementary particles. 

8. SUMMARY 

We started by considering space-time and ~'5 as generator of dual 
symmetry in space-time. In elementary particle physics "Y5 plays a double 
role, projecting out helicity states and transforming vector current into axial 
vector current... These facts and the success of the Weinberg-Salam theory 
left us to search into dual symmetry as the origin of the observed schemes of 
quarks and leptons. We have shown that such a scheme is possible and that 
the immediate consequences of it agree, at least qualitatively for the time 
being and in the symmetry of the scheme itself, with the most relevant 
known facts about noncomposite and composite elementary particles. 

It is interesting that the concept of color of Greenberg and Han and 
Nambu arises naturally from the dual-geometry symmetry scheme with all 
its assumed properties. Confinement in chromodynamics is of symmetry 
origin in the dual-geometry theory of elementary particles here presented 
but is transformed into a dynamical concept from rotation invariance 
considerations. 

Composite elementary particles are then really elementary from sym- 
metry considerations, but their structure is shown to consist of quarks and 
gluons as nonindependent entities which will affect the properties and 
reactions of the particles. 

The results of this paper could be obtained from the direct postulation 
of equations (29) and (37) but the geometrical meaning of duality would be 
obscured. We believe that our approach where the double role of 3'5 is fully 
discussed conducts to a deeper understanding of the subject. 
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During the course of this conference an interesting controversy arose 
when Professor Dirac pointed out that a good mathematical scheme is the 
basis of new scientific knowledge and that later studies may bring the 
underlying ideas out, while Professor Wigner insisted that sound physical 
reasoning is a good starting point. In the case of the present paper I have 
found that, as usual in science, opposite points of view turn out to be 
complementary: the basic scheme I am using started as a physical idea years 
ago, then in 1979-1980 I found the mathematical scheme which may 
express the basic ideas and as Professor Dirac said, the discovery that dual 
geometry was the explanation for it came only a year later. Then ideas and 
mathematics have come to support each other alternately. 
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